Machine learning with Python

1.Introduction

  • usage
  • different methods
  • steps of ML projects
  • cost function
  • parameters, hyperparameters
  • performance metrics

2. Data and project ideas

3. Data preparation

4. regular ML methods I - regression

5. regular ML methods I - classification

  • logistic / multinomial regression; SVM; Decision tree

6.  ensemble methods

  • Stacking
  • Random Forest
  • XGBoost

7. Neural nets I – structure

8. Neural nets II – tuning

Event